LS-12

K. Thompson/R. Lari February 14, 1985

First Designs and Cost Estimates for the Storage Ring Dipoles and Quadrupoles

Summary

The magnets described in this report are defined in reports LS-1 and LS-2. The required number considered here for each type of quadrupole resulted from the assumption that 16 insertion device straight sections were for undulators and 16 were for wigglers. A list of the major design criteria for the magnets is given and the results of the designs and the cost estimates obtained with the computer program MADEST are summarized. A total cost for the fabrication of these magnets is estimated to be \$6578.5 K. Also included are descriptions of the magnetic field calculations for the dipole magnet that were done using the computer programs TRIM, PE2D, and POISSON. These produced data on the vertical field shape in the radial direction for a flat pole dipole. These results permitted the magnitudes of the harmonic components in the radial field distribution and the track of an electron through a dipole to be estimated.

Contents

	Page
MADEST Calculations	3
Original Gap Parameters	4
Combined Gap Parameters	4
Dipole Sketch, Design, and Cost Details	7
Representative Quad Sketch, Design and Cost Details	
Design Parameters and Fabrication Costs	.19
TRIM Calculations	.20
Dipole Mesh Plot	.21
Dipole Flux Plot	. 21
Vertical Field Shape in Radial Direction	
Vertical Field Shape (Expanded)	. 24
Radial Field Shape in Radial Direction	
PE2D Calculations	27
Election Tracking	27
Field Shapes at $y = 0$, 1.5, and 3.0 vs r	28
Field Shapes at y = 0, 1.5, and 3.0 vs z	31
POISSON Calculations	34
Harmonic Content of Dipole Field	
Future Calculations	35

MADEST CALCULATIONS

The dipole and quadrupole magnet designs for the storage ring have been designed with the computer program MADEST. The program was also used to calculate the costs of the resulting magnets. Since the costs of these magnets are a large part of the total cost of the entire complex, the costing methodology had to be checked.

These checks involved the design and cost estimating of the dipoles and some quadrupoles in other electron facilities, some of which have been built. The comparisons were done for the costs appearing in the corresponding proposals for PEP (Stanford, 1975), CESR (Cornell, 1975), CHEER (FNAL-Canada, 1980), and NCAM (Lawrence Berkeley, 1983).

Our cost calculations are presently based on data that has been developed through the GEM, Julich, and ASPUN projects in the last several years, and through many years of collective experience in the fabrication of many magnets for the ZGS, the IPNS RCS, and the FNAL electron cooling ring and of prototype sector magnets for GEM.

Using this data the costs for the PEP and CESR magnet were higher than those that were proposed in 1975. There was, however, agreement to within 10% for the later machines at NCAM and CHEER. We are, therefore, presently using our 1983 data for the SLS magnets which can be easily adjusted for inflation.

From here the designs for the storage ring magnets for the 6 GeV Synchrotron Light Source (SLS) were developed based on parameters specified in reports LS-1 and LS-2. We also tried to include in these designs many of the same criteria used for the magnet designs in the electron facilities covered in the proposals listed above and the European Synchrotron Light Source (ESRP). The gap parameters as specified in LS-1 and LS-2 are summarized below:

Storage Ring Magnets Original Gap Parameters

Magnet Type	Quantity	L (m)	B or B' (T) or (T/m)	Aperture (cm)
М	64	2.95	0.6661	6.5H x 14W
QD1	32	0.7	-4.292	6.5 dia
QF2	32	1.0	18.385	6.5 dia
QD3	32	0.7	-17.649	6.5 dia
QD4	64	0.7	-7.499	6.5 dia
QF5	64	0.7	10.863	6.5 dia
QD6	32	0.7	-11.900	6.5 dia
QF7	32	1.0	8.880	6.5 dia

The quadrupole magnets form four groups, each covering a different strength range and, therefore, requiring different coils. The parameters for these combined cross-section designs are listed below:

Storage Ring Magnets Combined Gap Parameters

Magnet Type	B' (T/m)	Aperture (cm)	
QF2/QD3	19.0	6.5 dia	
QF5/QD6	12.0	6.5 dia	
QD4/QF7	9.0	6.5 dia	
OD1	5.0	6.5 dia	

Some of the other primary magnet characteristics are summarized below:

- 1. All magnets shall be compatible with the double-chamber design of the vacuum chamber as described in notes from the Vacuum Task Group since November 1-- major dimensions were defined about mid-November.
- 2. Magnet cores to be made from laminated steel 1.5mm thick. This will allow the cores to be magnetically matched by shuffling the laminations. Also it allows total freedom to specify the pole tip shapes including edge shims.
- 3. The back and top yoke thicknesses of the dipole C-core shall be thick enough to keep the gap height deflections at 6 GeV to less than about 0.025 mm this was the PEP criteria and corresponds to a 0.04% change in gap height.

- 4. The magnets shall be parallel stacked with magnet steel end plates made from magnet steel and welded tie bars. The dipoles will be curved by pressing laminations against a curved bar at the appropriate radius before welding.
- 5. The quadrupole cores shall have only top and bottom yokes. This not only keeps the midplane clear for the vacuum chamber but also maintains the magnet symmetry. A C-core disrupts right-left symmetry and would greatly complicate the shim design. The upper and lower magnet halves can be supported by a stainless steel strong-back bolted to the inside radius faces.
- 6. The dipole supply currents shall be less than 1000A and the quadrupole currents respectively shall be less than 500A. This would require two and one, respectively, 535MCM cables for each interconnection run.
- 7. All coils shall have only one potted assembly per pole. The dipole coils must fit through the gap.
- 8. The dipole coils shall have current densities in the copper conductor of around 2.5A/mm². Values like this are often quoted as being "optimum." The coils shall have a W/H ratio of around 2, and the vertical distance between the two coils shall be large enough to clear the vacuum chamber, anti-chamber. They shall also have at least two layers of conductor on each pole to prevent having electrical and cooling connections next to the core. Therefore, there will be only one water circuit per pole. This could allow us to have only three water hoses per magnet or maybe even one.
- 9. The quadrupole coils shall also have current densities in the copper conductors of around 2.5A/mm². The coils shall be shaped to keep the area around the midplane clear for the vacuum chamber. The same conductor shall be used in all quadrupoles and the coolant hole shall be around 0.5 times the outside width to assure that the conductor can be made. There shall be no more than four cooling circuits per magnet keeping the number of hoses to a minimum.

10. The coolant water system shall be capable of supplying a 100 psi pressure gradient across each magnet and a supply temperature of no larger than 38°C. These are typical values for the IPNS RCS accelerator. The temperature gradient across each magnet shall be less than about 17°F.

The dipole gap deflections were estimated by R. Wehrle for a case with a 21 cm wide pole and a 21 cm wide yoke. He found the deflections are less than .025 mm and were consistent with those he found using the same methodology for the PEP dipole. We, therefore, have generalized by keeping the yoke equal to the 14 cm pole width in the latest design.

The preliminary design for the dipole is summarized in Table I and the cost data is shown in Table II and a summary of the dipole costs is presented in Table III. A sketch of the dipole and vacuum chamber is shown in Figure 1.

A number of coils were designed for the QF5/QD6 quadrupole and it was noted that power losses could vary from about 4kW to less than lkW per magnet depending on how many conductors were placed in the coil on each pole. It was decided that the coil should be made from only one, series connected conductor with enough copper to keep the power losses to about 2kW per magnet. This is a fairly low value and allows each quad to be cooled with only one circuit. This could possibly eliminate the water hoses on the quads making very durable magnets.

The design for the QF5/QD6 quad is summarized in the parameter list in Table IV. This is a representative example of the quad cases. The cost data for the quadrupoles is shown in Table V an example of the quadrupole cost tables is shown in Table VI for the QF5/QD6 magnet. A sketch of the cross section of the QF5/QD6 quad and the vacuum chamber is shown in Figure 2. A summary of some of the design results and the costs for the eight magnets for the storage ring is given in Table VII.

Figure 1 - Storage Ring Dipole and Vacuum Chamber

TABLE I Storage Ring Dipole Design

1	DESIGN PARAMETERS of MAGNET SYSTEM:		
2		_	64
3	Number of magnets	=	Dipole HF
4	Type of magnet	=	Simple AC
5	Type of excitation	(Hz)=	21mp1e 110
6	Repetition frequency	(G)=	6661
7	Dipole field strength	(4/-	0001
8	DESIGN and OPERATING PARAMETERS of a SINGLE MAG	NET:	
9	DESIGN and OPERATING PARAMETERS OF a SINGLE THE		
10	*Vacuum chamber*		
12	Chamber type	=	None
13	*Gap*		
14	Gap axis shape	=	Curved
15	Effective length of field along gap axis	(cm)=	295
16	Total width of pole	(cm)=	14
17	Total gap height	(cm)=	6.5
18	*Core*		
19	Distance from-Field edge to-Core end	(cm)=	3.25
20	-Pole side	(cm)=	3.25
21	-Coil to-Pole face	(cm)=	1.85
22	-Pole side	(cm)=	.25
23	-Top yoke	(cm)=	0
24	-Side yoke	(cm)=	.5
25	-Endplate end	(cm)=	.5
26	Maximum average field density inside yoke	(G)=	9753
27	Ratio of side yoke thicknesses(L/R)	=	0
28	Overall core-Height	(cm)=	51.2
29	-Width	(cm)=	45.95
30	-Length	(cm)=	288.4
31	Total mass of magnetic core	(kg)=	4148
32	Lamination thickness	(cm)=	.15 Parallel
33	Lamination stacking method	=	7araile1 3000
34	Radius of curvature of gap axis	(cm)=	2.54
35	End plate thickness		
36	End plate material		Magnet st.
37	*Coil*	=	Copper
38	Conductor material	(cm)=	2.85
39	Conductor-Height	(cm)=	1.2
40	-Width	(cm)=	.8
41	-Hole diameter	(cm)=	.2
42	-Corner radius	\Cm>=	1
43	Number of coolant holes		5
44	Conductor min. bend radius(inside edge)-Wi	(cm)=	.05
45	Insulation-Tape-Thickness-Turn -Ground	(cm)=	. 1
46		(cm)=	2.5
47	-Width-Turn -Ground	(cm)=	2.5
48		(cm)=	. 1
49	Insulation total thickness-Turn -Ground	(cm)=	.2
50		(cm)=	654
51	Average turn length	=	1.1
52 53	Hydraulic bend factor	(%)=	90.6
53 54	Magnetic efficiency Ampere-turns per pole	Ampenes)=	19012
J4	umbere carns her hore		

TABLE I (Continued)

55	Coil configuration definition	=	Manual	
56	Number of layers of conductors per pole	=	2	
57	Number of conductors per layer per pole	=	12	
58	Effective number of turns per magnet	=	48	
59	Number of turns per cooling circuit	=	24	
60	Number parallel connected conductors per	magnet =	1	
61	Coil-Height	(cm)=	6.5	
62	-Width	(cm)=	17.2	
63	*Electrical*			
64	Stored energy	(J)=	6940 .	
65	Total inductance	(mH)=	22.1	
66	Total coil resistance	(mOhms)=	20.84	
67	Supply current (Amperes)=	792	
68	Voltage across magnet	(Volts)=	16.5	
69	Overall magnet-Height	(cm)=	51.2	
70	-Width	(cm)=	45.95	
71	-Length	(cm)=	323.8	
72	Min. length from gap center to magnet edge-Ve	rt. (cm)=	25.6	
73		riz.(cm)=	24.95	
74	Total mass of an assembled magnet	(kg)=	5044	
75				
76	OPERATING PARAMETERS of the MAGNET SYSTEM:			
77				
78	*Cooling circuit*			
79	Coolant supply temperature	(C)=	38	
80	Coolant temperature gradient	(C)=	19.49	
81	Pressure gradient	(psi)=	100	
82	Coolant flow	(gpm)=	164.4	
83				
84	Electrical losses in magnets	(W)=	837063	
85	Electrical power to operate coolant pumps	(N)=	10217	

1	MISCELLANEOUS ASSUMPTIONS AND FABRICATION	PARAMETERS:	
2	THE OCCUPANT OF THE OCCUPANT O		
3	Number of lamination parts	=	1
4	Number of stamping operations per laminat	tion part =	1
5	Number of core edges to machine	=	2
6	Number of coil pottings per pole	=	1
7	Core is potted	=	No
8	Mass of miscellaneous components	(kg)=	45.45
9	Average shipping distance	(km)=	1448
10	Shipping costs	(\$/kg)=	0
	Effort efficiency for work calculated in	-	80
11		(yr)=	10
12	Operating life	(%)=	50
13	Dut factor during operation	(%)=	0
14	Contingency		
15	TAU MOTERIO COCTO		
	RAW MATERIAL COSTS:		
17		(\$/kg)=	1.76
18	Magnetic steel sheet	(\$/kg)=	1.1
19	Low carbon steel	(\$/kg)=	4.4
20	Copper conductor_	(\$/cm)=	.001969
21	Insulation tape-Turn	(\$/cm)=	.001969
22	-Ground		3.52
23	Coil potting epoxy	(\$/kg)=	.06
24	Electric power	(\$/kW-hr)=	.05
25			
	FABRICATED PARTS COSTS:		
27			0
28	Laminations	(\$/unit)=	.8
29	Low-carbon steel end plates	(\$/unit)=	500
30	Miscellaneous coil fittings	(\$)=	200
31	Miscellaneous assembly fittings	(\$)=	400
32			
33	TOOLING FABRICATION COSTS:		
34			00000
35	Lamination die	(\$)=	30000
36	Core stacking fixture	(\$)=	12000
37		(\$)= <u></u> _	4000
38	Vapor degreaser for laminations	(\$)=	6000
39	Coil-Winding fixture	(\$)=	6000
40	-Potting fixture	(\$)=	8000
41		(\$)=	
42	Alignment fixtures	(\$)=	0
43	•		
	EXCESSES INCLUDED:		
45			_
46	Minimum number of spare magnets	(%)=	0
47		(%)=	0
48		(%)=	1
49		(cm)=	
50		(%)=	
51		(cm)=	
52		(%)=	10
53			
54	MISCELLANEOUS MATERIALS USAGE:		
55			

TABLE II (Continued)

56	Coil potting epoxy per insulation volume	(%)=	75	
57				
•	LABOR COSTS:			
59		/ #	0	
60	Technical staff(TS)	(\$/mmo)=	9	
61	Drafting(DR)	(\$/mmo)=	35	
62	Machinists (MA)	(\$/mhr)=	35 35	
63	Technician(TE)	(\$/mhr)=	35 35	
64	Riggers(RG)	(\$/mhr)=	33	
65				
•	FABRICATION EFFORT PER PROJECT:			
67		4	•	
68	Magnet design-TS	(mmo)=	1	
69	-DR	(mmo)=	1.5	
70	Procurement & QC-TS	(mmo)=	.2	
71	Core stacking fixture-Design-TS	(mmo)=		
72	-D R	(mmo)=	.5	
73	-Assem. & alignTS	(mmo)=	.2	
74	-TE	(mhr)=	.5	
75	Coil tooling design-TS	(mmo)=	.2	
76	-DR	(mmo)=	.5	
77	Core tooling design-TS	(mmo)=	.3	
78	-DR	(mmo)=	.6	
79	Project administration-TS	(%)=	0	
80				
81	FABRICATION EFFORT PER MAGNET:			
82				
83	Core-Stacking-TE	(mhr/unit)=	.016	
84	-Edge machining-MA	(mhr)=	12	
85	-Nelding-MA	(mhr)=	4	
86	-Assembly-TE	(mhr)=	4	
87	-Moving-RG	(mhr)=	2	
88	-Supervision-TS	(mmo)=	.05	
89	Coil-Application of turn insulation-TE	(mhr/wrap)=	.003	
90	-Winding-TE	(mhr/bend)=	.25	
91	-Brazing of cooling & elec. joints-TE	(mhr/joint)=	4	
92	-Application of ground insulation-TE	(mhr/unit)=	1	
93	-Potting-TE	(mhr/unit)=	16	
94	-Tests-TE	(mhr/unit)=	2	
95	-Supervision-TS	(mmo)=	.05	
96	Magnet assembly-Coil installation-TE	(mhr)=	2	
97	-Cooling & elec. connectio	ns-TE (mhr)=	4	
98	-Tests-TE	(mhr)=	8	
99	-Moving-RG	(mhr)=	2	
100	-Supervision-TS	(mmo)=	.05	
	•			

TABLE III
Major Costs for Fabricating Storage Ring Dipoles

Quantity

Cost

Cost estimates for 64 magnets.

Purchased Materials and Parts

COSTS F	OR FABR	ICATING	THE	MAGNETS:

							(K\$)
Magnetic steel					372448	kg	651.3
Laminations					121480	-	97.2
End plate fabrica	ation				128		64.0
Copper conductor					57162	kg	251.5
Tape insulation					17922570	C M	35.3
Epoxy					2056	kg	7.2
Misc hardware					2909	kg	44.8
Shipping					434575	kg	0.0
						Subtotal	1151.3
Effort	TS	DR	MA	TE	RG		Cost
		(ma	n-mont	hs)			(K\$)
Core-Machining			5.5				33.6
-Assembly			1.8	15.7	. 9		112.0
Coil-Winding				22.6			137.2
-Insulating				. 9			5.6
-Assembly				29.5			179.2
-Potting				14.7			89.6
-Testing				1.8			11.2
Magnet-Assembly			1.8	2.8			28.0
-Testing				3.7			22.4
Moving					.9		5.6
			9.1	91.7	1.8	Subtotal	624.4

COSTS DISTRIBUTED OVER ENTIRE PROJECT:

Design-Tooling -Magnet	.7 1.0	1.6 1.5			
Tooling-Fabrication					66.0
-Assembly	.2		.2		1.4
Supervision	9.6				
	11.5	3.1	.2	Subtotal	67.4

Administration Contingency

Grand Total 1843.1 x 1.1 = 2027.5 (1985\$K)

Effort totals 11.5 3.1 9.1 91.9 1.8

To build and operate for 10 years at 4380 hours each is \$4070 K.

Costs to Engineer-Design-Inspect-Administrate are 0% of the costs to build.

Figure 2 - Storage Ring QF5/QD6 Quad and Vacuum Chamber

TABLE IV Storage Ring QF5/QD6 Quad Design

```
DESIGN PARAMETERS of MAGNET SYSTEM:
 2
 3 Number of magnets
                                                              = Quadrupole
 4
    Type of magnet
    Type of excitation
                                                              = Simple AC
 6
       Repetition frequency
                                                          (Hz)=
 7
    Maximum multipole field gradient
                                                        (G/cm)=
 8
 9 DESIGN and OPERATING PARAMETERS of a SINGLE MAGNET:
10
11
    *Vacuum chamber*
12
       Chamber type
                                                                       None
13
    *Gap*
14
       Effective length of field along gap axis
                                                                         70
                                                          (cm) =
15
       Total width of pole
                                                          (cm) =
16
       Total bore radius
                                                          (cm)=
                                                                     3.25
17
    *Core*
18
       Distance from-Field edge to-Core end
                                                          (cm)=
                                                                      1.414
19
                      -Coil to-Pole face
                                                          \langle cm \rangle =
                                                                          0
20
                              -Pole side
                                                                        . 15
                                                          (cm)=
21
                              -Top yoke
                                                          (cm)=
                                                                          0
22
                              -Side yoke
                                                          (cm) =
23
                              -Endplate end
                                                                          2
                                                          (cm)=
24
       Pole radius
                                                                      3.705
                                                          (cm)=
25
       Angle of pole
                                                         (deq)=
26
       Angle between pole axis and pole side
                                                         (deg)=
27
       Maximum field density at pole edge
                                                          (G)=
                                                                      5015
28
       Maximum average field density inside yoke
                                                           (G)=
                                                                      15000
29
       Ratio of side to top yoke thicknesses(S/T)
30
       Overall core-Height
                                                          (cm) =
                                                                      41.77
31
                                                                      31.3
                    -Width
                                                          (cm)=
32
                    -Length
                                                          (cm)=
                                                                       67.2
33
       Total mass of magnetic core
                                                          (kg)=
34
       Lamination thickness
                                                          (cm) =
                                                                        .15
35
       Lamination stacking method
                                                                  Parallel
                                                                  1.5
36
       End plate thickness
                                                          (cm) =
37
       End plate material
                                                              = Magnet st.
38
    *Coil*
39
       Conductor material
                                                                    Copper
40
       Conductor-Height
                                                                       1.5
                                                          (cm)=
                                                                        1.5
41
                 -Width
                                                          (cm) =
42
                 -Hole diameter
                                                          (cm) =
43
                 -Corner radius
                                                          (cm)=
44
       Conductor min. bend radius(inside edge)-Width (cm)=
45
       Insulation-Tape-Thickness-Turn
                                                         (cm) =
                                                                        .05
46
                                  -Ground
                                                          \langle cm \rangle =
                                                                        _. 1
47
                        -Width-Turn
                                                          (cm) =
                                                                        2.5
48
                              -Ground
                                                          =(m)
                                                                        2.5
49
       Insulation total thickness-Turn
                                                          \langle cm \rangle =
                                                                        . 1
                                   -Ground
50
                                                          (cm) =
                                                                        . 2
51
       fiverage turn length
                                                          (cm)=
                                                                      154.2
52
       Hydraulic bend factor
                                                                       1.1
53
                                                           (%)=
                                                                        90
       Magnetic efficiency
54
                                                    (Amperes)=
                                                                       5603
       Ampere-turns per pole
```

TABLE IV (Continued)

55	Coil configuration definition	***	Manual	
56	Number of layers of conductors per pole	=	6 2 48	
57	Number of conductors per layer per pole	=	2	
58	Effective number of turns per magnet	• =		
59	Number of turns per cooling circuit	= <u> </u>	48	
60	Number parallel connected conductors per	magnet =	1	
61	Coil-Height	(cm)=	10.6	
62	-Width	(cm)=	3.8	
63	*Electrical*			
64	Stored energy	(J)=	997	
65	Total inductance	(mH)=	9.15	
66	Total coil resistance	(mOhms)=	7.96	
67	Supply current (f	Amperes)=	466.9	
68	Voltage across magnet	(Volts)=	3.718	
69	Overall magnet-Height	(cm)=	41.77	
70	-Width	(cm)=	31.3	
71	-Length	(cm)=	78.8	
72	Min. length from gap center to magnet edge-Ver	rt. (cm)=	20.88	
73	-Hor	riz.(cm)=	15.66	
74	Total mass of an assembled magnet	(kg)=	547	
75				
76	OPERATING PARAMETERS of the MAGNET SYSTEM:			
77				
78	*Cooling circuit*			
79	Coolant supply temperature	(C)=	38	
80	Coolant temperature gradient	(C)=	3.458	
81	Pressure grádient	(psi)=	100	
82	Coolant flow	(gpm)=	184	
83	*Power losses*			
84	Electrical losses in magnets	(M)=	166674	
85	Electrical power to operate coolant pumps	(W) =	11433	

	MICORI LOURGUA ASSUMBTIQUA CUE FORBICOTION I	ODOMETERS.	
1	MISCELLANEOUS ASSUMPTIONS AND FABRICATION F	THRHMETERS:	
2			
3	Number of lamination parts	====	2
4	Number of stamping operations per laminati	ion part =	1
5	Number of core edges to machine	=	2
6	Number of coil pottings per pole	=	1
7	Core is potted	=	No
8		(kg)=	10
9	Average shipping distance	(km)=	1448
10		(\$/kg)=	9
11	Effort efficiency for work calculated in a	_	80
12	•	(yr)=	10
13	Duty factor during operation	(%)=	50
14	- · ·	(%)=	Ø
	Contingency	(4/-	· ·
15	DOU MOTERIOL COOTS		
	RAW MATERIAL COSTS:		
17		4 5 .1 . 3	4 76
18	Magnetic steel sheet	(\$/kg)=	1.76
19	Low carbon steel	(\$/kg)=	1.1
20	Copper conductor	(\$/kg)=	4.4
21	Insulation tape-Turn	(\$/cm)=	.001969
22	-Ground	(\$/cm)=	.001969
23	Coil potting epoxy	(\$/kg)=	3.52
24	Electric power	(\$/kW-hr)=	.06
25	The second secon		
	FABRICATED PARTS COSTS:		
27			
28	Lamination parts	(\$/unit)=	.8
29		(\$/unit)=	500
30	Miscellaneous coil fittings	(\$)=	200
	Miscellaneous assembly fittings	(\$)=	1.4
31	miscellaneous assembly fictings	\ * /	
32	TOOLING FORDICATION COCTO		
33	TOOLING FABRICATION COSTS:		,
34	;	/ /	00000
35	Lamination die	(\$)=	20000
36	Core stacking fixture	(\$)=	8000
37	Lamination edge machining fixture	(\$)=	2500
38	Vapor degreaser for laminations	(\$)=	6000
39	Coil-Winding fixture	(\$)=	6000
40	-Potting fixture	(\$)=	8000
41	Vacuum impregnation consumable hardware	(\$)=	100
42	Alignment fixtures	(\$)=	9
43	Ť		
	EXCESSES INCLUDED:		
45	The state of the s		
46	Minimum number of spare magnets	(%)=	0
47	•	(%)=	0
48	Magnetic steel sheet	(%)=	1
49		(cm)=	
50		(%)=	
		(cm)=	
51	Coil end lengths	(%)=	
52	Copper conductor	(4)=	10
53	MARGELL OUESILS MOTERAGES DESCE		
	MISCELLANEOUS MATERIALS USAGE:		
55			

TABLE V (Continued)

56	Coil potting epoxy per insulation volume	(%)=	75	
57				
58	LABOR COSTS:			
59			_	
60	Technical staff(TS)	(\$/mmo)=	. 0	
61	Drafting(DR)	(\$/mmo)=	0	
62	Machinists(MA)	(\$/mhr)=	35	
63	Technician(TE)	(\$/mhr)=	35	
64	Riggers(RG)	(\$/mhr)=	35	
65				
66	FABRICATION EFFORT PER PROJECT:			
67				
68	Magnet design-TS	(m m o) =	1	
69	-DR	(mmo)=	1.5	
70	Procurement & QC-TS	(mmo)=	0	
71	Core stacking fixture-Design-TS	(mmo)=	.2	
72	-DR	(mmo)=	. 5	
73	-Assem. & alignTS	(mmo)=	. 2	
74	-TE	(mhr)=	.5	
75	Coil tooling design-TS	(mmo)=	.2	
76	-DR	(mmo)=	.5	
77	Core tooling design-TS	(mmo)=	.3	
78	-DR	(mmo)=	.6	
79	Project administration-TS	(%)=	0	
80	·			
81	FABRICATION EFFORT PER MAGNET:			
82				
83	Core-Stacking-TE	(mhr/unit)=	.012	
84	-Edge machining-MA	(mhr)=	8	
85	-Welding-MA	(mhr)= <u> </u>	8	
86	-Assembly-TE	(mhr)=	16	
87	-Moving-RG	(mhr)=	4	
88	-Supervision-TS	(mmo)=	.05	
89	Coil-Application of turn insulation-TE	(mhr/wrap)=	.003	
90	-Winding-TE	(mhr/bend)=	.25	
91	-Brazing of cooling & elec. joints-TE	(mhr/joint)=	4	
92	-Application of ground insulation-TE	(mhr/unit)=	· 1	
93	-Potting-TE	(mhr/unit)=	16	
94	-Tests-TE	(mhr/unit)=	2	
95	-Supervision-TS	(mmo)=	.05	
96	Magnet assembly-Coil installation-TE	(mhr)=	2	
97	-Cooling & elec. connection		8	
98	-Tests-TE	(mhr)=	8	
99	-Moving-RG	(mhr)=	2	
100	-Supervision-TS	(mmo)=	.05	
100	Ambar Almian in	2		

Cost estimates for 96 magnets.

COSTS	EUD	FABRICATING	THE	MOCHETC:
UUDID	ruk	LURKICH LING	INE	MINGHE 15.

Purchased Materials	and Pa	rts			Quar	ntity	Cost (K\$)
Magnetic steel Laminations					8253		134.4 66.0
End plate fabricati	on					92	96.0
Copper conductor						25 kg	53.8
Tape insulation					531496		10.5
Ероху						50 kg	2.3
Misc hardware						50 kg	28.9
Shipping					9145	57 kg	0.0
						Subtotal	391.9
Effort	TS	DR	МA	TE	RG		Cost
		(ma	n-mont	hs)			(K\$)
Core-Machining			5.5				33.6
-Assembly			5.5	14.5	2.8		138.9
Coil-Winding				33.5			203.7
-Insulating				2.8			16.8
-Assembly				8.3			50.4
-Potting				44.2			268.8
-Testing				5.5			33.6
Magnet-Assembly			5.5	6.9			75.6
-Testing				5.5			33.6
Moving					1.4		8.4
			16.5	121.2	4.2	Subtotal	863.4
COSTS DISTRIBUTED OVE	R ENTI	RE PRO	JECT:				
Design-Tooling	.7	1.6					
-Magnet	1.0	1.5					
Tooling-Fabrication							50.5
-Assembly	.2			.3			2.1
Supervision	14.4						
	16.3	3.1		.3		Subtotal	52.6
Administration Contingency							

Grand Total $1307.9 \times 1.1 = 1438.7$ (1985K\$)

Effort totals 16.3 3.1 16.5 121.5 4.2

To build and operate for 10 years at 4380 hours each is \$1776 K.

Costs to Engineer-Design-Inspect-Administrate are 0% of the costs to build.

Magnet Type	Number Req.'d	Current (A)	Voltage (V)	ΔT (°C)	Total Mass (Tonne)	Total Power (kW)	Total Water Flow (gpm)	Total Fabrication Costs (K\$(85))
M	64	792	16.5	19.5	323	837	164	2027.5
QD1	32	467	1.5	0.8	6	22	101	430.0
QF2	32	493	8.5	12.6	43	134	41	660.0
QD3	32	493	6.1	7.7	31	97	48	593.1
QD4	64	467	2.9	2.3	29	86	141	908.1
QF5/QD6	96	467	3.7	3.5	52	167	184	1438.7
QF7	32	467	4.0	3.8		59	59	521.1
т	otals fo	r Ring			505	1402	738	6578.5

TRIM CALCULATIONS

To address the field errors of the dipole magnets, we have done several magnetic field calculations. A TRIM calculation was done for a <u>flat</u> pole version of the magnet. This utilized a relatively high resolution mesh that could be altered at a later date to incorporate some edge shims. The mesh generated is shown in Figure 3 and a plot of the field lines is shown in Figure 4. The calculated midplane vertical field strengths across the gap are shown in Figure 5 (followed by tabulated values). The right hand edge of this plot also represents the shape of the end field. Figure 6 shows an expanded view around the gap center. Also a plot was made for the radial field component, at y = 1.5 cm, near the gap center as shown in Figure 7 (followed by tabulated values). This TRIM run also provided the forces on the coils. The TRIM data tape could also be used to calculate the forces between the poles so a more accurate calculation of the pole deflections could be carried out in the future.

Figure 3 - Mesh for the Storage Ring Dipole

Figure 4 - Field Lines in the Storage Ring Dipole

Figure 5 - Vertical Field along a radial line in the midplane of the Storage Ring Dipole

Vertical field strengths on the midplane as calculated with TRIM

SLSM2B -6.5 cm imes 14 cm Gap + 14 cm Yoke VERTICAL

The value of Bo used in the following list is 6661.99.

The input coordinate pairs are (X,B) and pairs to be plotted are (X,B/Bo):

	inpas cooi	omave pamp	a, c (11, 2) and	p. 2
#	Х	B(Gauss)	X(cm)	B/Bo
1	48.7000	5292.6600	48.7000	0.79446
2	49.1833	5615.9600	49.1833	0.84299
3	49.6666	5891.9600	49.6666	0.88441
4	50.1499	6113.1600	50.1499	0.91762
5	50.6332	6281.2900	50.6332	0.94285
6	51.1165	6403.8600	51.1165	0.96125
7	51.5998	6490.4200	51.5998	0.97425
8	52.0831	6550.1500	52.0831	0.98321
9	52.5667	6590.6700	52.5667	0.98929
10	53.0500	6617.8000	53.0500	0.99337
11	53.5333	6635.7600	53.5333	0.99606
12	54.0167	6647.4900	54.0167	0.99782
13	54.5000	6654.9900	54.5000	0.99895
14	54.9833	6659.5500	54.9833	0.99963
15	55.4667	6661.9900	55.4667	1.00000
16	55.9500	6662.7400	55.9500	1.00011
17	56.4333	6661.9400	56.4333	0.99999
18	56.9167	6659.4600	56.9167	0.99962
19	57.4000	6654.8400	57.4000	0.99893
20	57.8833	6647.2900	57.8833	0.99779
21	58.3667	6635.4800	58.3667 58.8500	0.99602 0.99331
22	58.8500	6617.4100	59.3333	0.98922
23	59.3333	6590.1500	59.8167	0.98311
24	59.8167	6549.4500 6489.4600	60.3000	0.97410
25	60.3000 60.7833	6402.5100	60.7833	0.96105
26 27	61.2667	6279.2900	61.2667	0.94255
28	61.7500	6110.0500	61.7500	0.91715
29	62.2333	5887.0200	62.2333	0.88367
30	62.7167	5608.2700	62.7167	0.84183
31	63.2000	5281.1800	63.2000	0.79273
32	64.1900	4543.0700	64.1900	0.68194
33	65.1800	3817.0000	65.1800	0.57295
34	66.1700	3185.0000	66.1700	0.47809
35	67.1600	2664.0000	67.1600	0.39988
36	68.1500	2241.0000	68.1500	0.33639
37	69.1400	1897.0000	69.1400	0.28475
38	70.1300	1613.0000	70.1300	0.24212
39	71.1200	1374.0000	71.1200	0.20624
40	72.1100	1170.0000	72.1100	0.17562
41	73.1000	994.0000	73.1000	0.14920
42	74.0900	839.0000	74.0900	0.12594
43	75.0800	702.0000	75.0800	0.10537
44	76.0700	581.0000	76.0700	0.08721
45	77.0600	473.0000	77.0600	0.07100
46	78.0500	378.0000	78.0500 79.0400	0.05674 0.04443
47	79.0400	296.0000	79.0400 80.0300	0.03392
48	80.0300	226.0000 168.0000	81.0200	0.02522
49 50	81.0200 82.0100	122.0000	82.0100	0.02322
ວຍ 51	83.0000	87.0000	83.0000	0.01306
.J 1	00.00000	0,,0000		

Figure 6 - Vertical Field (expanded) along a radial line on the midplane and near the center of a Storage Ring Dipole

Figure 7 - Radial Field along a radial line, at 1.5 cm above the midplane, in a Storage Ring Dipole

Radial field strengths at y = 1.5 cm above the midplane as calculated by TRIM

SLM2BR 6.5cm x 14cm Gap + 14cm Yoke RADIAL Z=.5

The value of Bo used in the following list is 6661.99.

The input coordinate pairs are (X,B) and pairs to be plotted are (X,B/Bo):

#	X	B(Gauss)	X(cm)	B/Bo
1 2 3 4 5 6 7 8 9 10 11	53.0500 53.5333 54.0167 54.5000 54.9833 55.4667 55.9500 56.4333 56.9167 57.4000 57.8833 58.3667	22.4700 15.0500 10.0500 6.6200 4.2100 2.3800 0.8300 7300 -2.5600 -4.9800 -8.4200 -13.4300	53.0500 53.5333 54.0167 54.5000 54.9833 55.4667 55.9500 56.4333 56.9167 57.4000 57.8833 58.3667	0.00337 0.00226 0.00151 0.00099 0.00036 0.00012 00011 00038 00075 00126 00202
10 11	57.4000 57.8833	-2.5600 -4.9800 -8.4200	56.9167 57.4000 57.8833	00 00 00

PE2D CALCULATIONS

In addition to the TRIM magnetic field calculations, the computer program PE2D was used to check these results and we tried to utilize the TRACKING feature to track electron through the end field. Preliminary tracking results are shown below. The field values are given in TABLE VIII and plotted in Figure 8 for both the area under the pole and the end field region. They agree with TRIM to a reasonable accuracy.

```
TRACK STARTING PARAMETER
FIELD FACTOR*
                1 00 TOL=
                                0 0100000 STEP-
                                                      0 1000
MAX NO OF STEPS.
                     200 ZMAR:=
                                   40 000 ZMIN=
                                                      0 000 IFLDT-
TRACK
          \mathbb{Z}\emptyset
                     XØ
                                          THETH
                                                     PHI
                                                                MASS
          0 010
                    38.950 6 000E+09
                                          90 000
                                                      0 000
                                                                 0 000 1 00000
HIT-
          = QTIN 0
                      3
General ray tracing option
Fields from PE2D
Magnetic field
Electrons
 REAC -
             1 000
 TOLERANCE =
                   0 0100
 STAPTING PARAMETERS | UOLTS = 6 000E+09 ANGLE =
                                                      90 000 PHI -
                                                                       0 000
         38 950 20=
                          0.010 UELOCITY* 2 998E+08 M/SEC
 TRACK NUMBER
  ISTER
                         \mathbf{z}
                                             PHI
                                                       ANGLE
                                                                    ΒZ
                                                                               B×
     O
        0.000000
                   0 010000
                               38 9500
                                         0 000000
                                                    90 0000
                                                               6660 98
                                                                         -0 15180
    10
        3 34E-11
                   0 010000
                               39.9500
                                         0 014476
                                                     30 0000
                                                               6658 37
                                                                         -157566
    20
        6 67E-11
                   0.010000
                               40 9494
                                         0.056469
                                                    90 0000
                                                               6648 29
                                                                         -4 35194
    30
        1 00E-10
                   0 002999
                               41 9481
                                         0 123931
                                                    90 0000
                                                               6621 50
                                                                         -11 2060
                   0 009996
    40
          33E-10
                               42.9457
        1
                                         0.214938
                                                    90.0003
                                                               6554.81
                                                                         -27 0664
   50
          67E-10
                   0.009986
        1
                               43.9416
                                         0.327483
                                                    90 0010
                                                               6397.32
                                                                         -60 601B
   6€
        2
          00E-10
                   0.009956
                               44 9357
                                         0.459400
                                                    90.0027
                                                               6060 72
                                                                         -117 046
   70
          33E-10
                              45.9274
        2
                   0.009894
                                         0.608094
                                                    90.0060
                                                               5421.97
                                                                         -175030
          67E-10
   80
        2
                   0.009742
                              46.9171
                                         0.770284
                                                    90.0107
                                                               4687 98
                                                                         -192 003
          00E-10
   90
                              47.9047
        3
                   0.009514
                                         0.942490
                                                    90 0158
                                                               3905.50
                                                                         -174 520
  100
        3.34E-10
                   0.009200
                              48.8903
                                         1.12142
                                                    90 0204
                                                               3219.09
                                                                         -144 197
                   0 008811
  110
        3 67E-10
                              49.8742
                                         1 30436
                                                    90 0246
                                                               2667.20
                                                                         -114 806
  120
        4 00E-10
                   0 008358
                              50.8567
                                         1.48920
                                                    90 0280
                                                               2230 40
                                                                         -91 7007
  130
          34E-10
                   0 007853
                              51.8379
                                         1 67438
                                                    90 0308
                                                               1877.13
                                                                         -73 9364
        4 67E-10
  140
                   0 007303
                              52.8179
                                         1 85873
                                                    90 0331
                                                               1589 50
                                                                         -60 5202
  150
         00E-10
        5
                              53<sup>7</sup>7978
                   0 006716
                                         2 04142
                                                    90 0350
                                                               1355 60
                                                                         -50 8616
  160
        5
          34E-10
                   0 006098
                              54 7751
                                         2 22178
                                                    90 0369
                                                               1156 42
                                                                         -43 3752
  170
        5 67E-10
                   0 005452
                              55
                                  7527
                                         2 39930
                                                    90 0383
                                                               984 383
                                                                         -37 5014
  081
        6 00E-10
                   0 004781
                              56
                                  7296
                                         2.57366
                                                    90 0397
                                                               836 288
                                                                         -32 8340
  190
        6 34E-10
                   0.004023
                              57
                                  7059
                                         2 74452
                                                    90 0409
                                                               705 954
                                                                         -29 0113
  005
        6 67E-10
                   0 003378
                              58 6818
                                         ≥ 91173
                                                    90 0419
                                                               589 876
                                                                         -25 6930
End of track
```

TABLE VIII-A

"(,cɪ̄̄̄̄)	$B_{y}(y = 0)$	$B_{y} (y = 1)$.5) B _x (GAUSS) $B_{y} (y = 3.$	0) B _x
X position 31 9500 32 4500 32 9500 33 4500 33 9500 34 4500 35 4500 35 4500 36 4500 37 4500 37 4500 38 4500 39 9500 40 9500 41 9500 41 9500 42 4500 43 9500 44 9500 45 4500 46 9500 47 9500 48 9500 48 9500 49 9500 41 9500 41 9500 42 4500	986 88 88 88 88 88 88 88 88 88 88 88 88 8	5450 23 6132 69 6132 69 6519 27 6584 51 6643 81 6653 70 6653 665 6665 6665 6665 6665 6664 81 6665 6664 666 6665 6664 6665 6664 6665 6664 6665 6664 6665 6664 6665 6664 6665 6664 6665 6665 6664 6665 66	Value 1249 24 965 178 675 299 448 907 290 392 185.087 116.520 73.1099 45.5580 28.3500 17.4251 10.3883 5.81848 2.53010 -0.101800 -2.67961 -5.84786 -10.2854 -17.0491 -27.6441 -44 4728 -71.2847 -114.016 -181.399 -286.378 -445 497 -673 000 -960.080	Value 6655 49 8403 10 7638 27 6995 01 6863 24 6786 00 6711 98 6694 28 6671 97 6672 27 6672 27 6673 96 6673 96 6673 96 6673 96 6673 96 6673 96 6673 40 6683 64 6710 49 6738 24 6784 02 6861 40 6784 27 7731 07 8842 86	Value 4360.5 1776.80 670.038 303.910 156.443 86.8878 50.1020 30.1290 18.3911 11.1673 6.73057 4.00117 2.20156 0.899289 -0.209888 -1.16854 -2.22562 -3.71544 -6.07600 -9.83560 -15.6620 -25.4003 -42.0960 -71.5110 -127.089 -244.113 -534.940 -1429.21

(cm)	$B_{\mathbf{y}}(\mathbf{y}=0)$	$B_{y} (y = 1.5)$	B _x (GAUSS)	$B_{y} (y = 3.0)$) B _x
9500 9500 9500 9500 9500 9500 9500 9500	100	669 64 666 666 666 666 666 666 666 666 6	Ualue -0.101800 -5.84786 -17.0491 -44.4728 -114.016 -286.378 -673.000 -1224.30 -1307.77 -1139.93 -914.803 -713.227 -566.918 -456.852 -374.010 -314.889 -269.242 -232.886 -204.694 -181.296 -160.469 -141.620 -123.811 -105.684 -87.3798 -69.9417 -55.0478 -42.5021 -32.0678 -24.2670 -18.4840 -13.7824 -10.4374 -7.94970 -5.93617	6671 50 6673 96 6683 54 6710 49 6784 02 6986 04 7731 07 6160 01 4075 37 3062 27 2490 04 2120 94 2120 94 1822 13 1566 72 1355 30 1171 20 1005 92 860 634 730 511 611 044 502 796 404 788 315 736 237 394 169 564 121 436 88 9042 66 3911 47 6297 32 8699 24 0470 16 3170 10 2856 6 42776 3 03662	-0.5 toe -0.207630 -2.25600 -1.2076000 -1.2096000 -1.2096000 -1.209600000000000000000000000000000000000
73 950 74 950		3 17901 0 783658	-4.53010 -3.45046	∅ 450518 -1 27722	-8 29949 -6 33389

POISSON CALCULATIONS

POISSON is a next generation of TRIM and the mesh is set up in a similar manor. It has one feature in it that TRIM does not have, namely, the field can be analyzed in terms of the harmonic content. For a dipole field with symmetry, only the odd harmonies can be present, namely m=1 (dipole), 3 (sextupole), 5,7, etc. A calculation that was not fully converged (due to other problems) had the harmonic fields as shown in TABLE IX.

TABLE IX
Harmonic content in the storage ring dipole

N	Bn (at r _o =2.54 cm)
1	6634.7
3	6.6
5	15.6
7	2.1
9	7.5

Remember, that at a smaller radius, the field will fall off as $(r/r_0)^{N-1}$ so the higher harmonies fall off very fast as the radius decreases. For a fully converged solution, these higher harmonics should be smaller.

FUTURE CALCULATIONS

There still is more that can be done to fine tune the designs for the storage ring magnets. The cores and coils must be optimized to some degree. Shims could be developed for the edges of the poles in the dipoles. This can be done in a fairly short time (1 week) for the dipoles, but doing it for the quadrupoles would be more time consumming since there are four different designs and the geometry is much more complex to set up than for a dipole. A 3 dimensional calculation using TOSCA would be needed to calculate the harmonics due to the edge fields of the magnets.